CRITICAL STORM & GENERAL STORAGE REQ'T

Stevenson Associates		Page 1
PO Box 58	Bishop's Close	
Monk Fryston	Cawood	Micro
Leeds LS25 5WZ		ß
Date April 2015	Designed By Stevenson	Pranace
File BC 1.SRC	Checked By	
Micro Drainage	Storage Design W.11.3	
		13 May 2015

Summary of Results for 50 year Return Period

BUSINESS SUPPORT

Storm Duration (mins)	Maximum Control (1/s)	Maximum Outflow V (1/s)	Maximum Nater Level (m OD)	Maximum Depth (m)	Maximum Volume (m³)	Status
<pre>15 Summer 30 Summer 60 Summer 120 Summer 180 Summer 240 Summer 360 Summer 600 Summer 720 Summer 960 Summer 15 Winter 30 Winter 120 Winter 180 Winter 240 Winter 360 Winter 480 Winter 960 Winter 960 Winter</pre>	2.4 2.6 2.7 2.8 2.8 2.7 2.7 2.7 2.6 2.5 2.5 2.5 2.5 2.7 2.9 3.0 3.0 3.0 2.9 2.8 2.7 2.7 2.5	2.4 2.6 2.7 2.8 2.8 2.7 2.7 2.6 2.6 2.5 2.5 2.5 2.5 2.7 2.9 3.0 3.0 3.0 2.9 2.8 2.7 2.7 2.5	6.7732 6.8703 6.9538 6.9968 6.9883 6.9718 6.9718 6.9373 6.9083 6.8813 6.8553 6.8063 6.8198 6.9343 7.0423 7.1193 7.1168 7.0888 7.0348 6.9883 6.9453 6.9053 6.8308	0.5532 0.6503 0.7338 0.7768 0.7683 0.7518 0.7173 0.6883 0.6613 0.6353 0.5998 0.7143 0.8223 0.8993 0.8968 0.8688 0.8148 0.7253 0.6853 0.6108	$\begin{array}{c} 32.7\\ 41.3\\ 48.4\\ 51.9\\ 51.2\\ 49.9\\ 47.1\\ 44.6\\ 42.3\\ 40.0\\ 35.6\\ 36.9\\ 46.8\\ 55.3\\ 60.2\\ 60.0\\ 58.4\\ 54.7\\ 51.2\\ 47.8\\ 44.4\\ 37.8\end{array}$	0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
		Storm Duration (mins)	Rain T (mm/hr)	ime-Peak (mins)		
		15 Summer 30 Summer 60 Summer 120 Summer 240 Summer 360 Summer 480 Summer 600 Summer 960 Summer 15 Winter 30 Winter 60 Winter 120 Winter 480 Winter 480 Winter 600 Winter 960 Winter 960 Winter	52.55 32.83 19.89 14.67 11.76 8.57 6.85 5.75 4.98 3.97 80.37 52.55 32.83 19.89 14.67 11.76 8.57 6.85 5.75 4.98 12.75 32.83 19.89 14.67 11.76 8.57 6.85 5.75 4.98 12.75 32.83 19.89 14.67 11.76 8.57 4.98 12.75 32.83 19.89 14.67 11.76 8.57 4.98 12.75 32.83 19.89 14.67 11.76 8.57 4.98 5.75 4.98 12.75 32.83 19.89 14.67 11.76 8.57 4.98 5.75 4.98 12.75 4.98 12.75 4.98 1.76 8.57 4.98 5.75 4.98 12.75 4.98 5.75 4.98 5.75 4.98 5.75 4.98 5.75 4.98 5.75 4.98 5.75 5.75 4.98 5.75 4.98 5.75 4.98 5.75 5.75 4.98 5.75 5.75 5.75 5.75 4.98 5.75	18 33 62 120 156 188 254 324 392 462 598 18 32 60 118 170 196 272 350 426 500 644		

©1982-2008 Micro Drainage

Stevenson Associates	,	Page 2
PO Box 58	Bishop's Close	
Monk Fryston	Cawood	VICRO
Leeds LS25 5WZ		
Date April 2015	Designed By Stevenson	LEIGE
File BC 1.SRC	Checked By	
Micro Drainage	Storage Design W.11.3	
	Rainfall Details	
Region Return Period (years) M5-60 (mm) Ratio-R	ENG+WAL Cv (Summer) 50 Cv (Winter) 19.000 Shortest Storm (mins) 0.400 Longest Storm (mins)	0.840 Winter Storms Yes 15
	<u> Time / Area Diagram</u>	
	Total Area (ha) = 0.232	
	Time (mins) Area	
	from: to: (ha)	
	0 4 0.232	
	@1000 0000 Mises Desi	~~
	©1982-2008 Micro Draina	ye

Stevenson Associates		Page 3
PO Box 58 Monk Fryston	Bishop's Close Cawood	Micro
Leeds LS25 5WZ Date April 2015 File BC 1.SRC	Designed By Stevenson Checked By	Drainage
Micro Drainage	Storage Design W.11.3	

Circular Pipe Details

Diameter (m) 0.900 Length (m) 100.000 Cover Level (m) 7.670 Slope (1:x) 500.0 Invert Level (m) 6.220

Hydro-Brake Outflow Control

Design Head (m) Design Flow (l/s)	0.900 Hydro-Brake 3.0 Diameter	Type MD6 (mm) 75	Invert Level	(m)	6.220	
--------------------------------------	-----------------------------------	---------------------	--------------	-----	-------	--

Depth	Flow										
(m)	(1/s)	(m)	(l/s)	(m)	(l/s)	(m)	(l/s)	(m)	(1/s)	(m)	(l/s)
0.10	2.0	0.60	2.5	1.60	4.1	2.60	5.2	5.00	7.2	7.50	8.8
0.20	2.3	0.80	2.9	1.80	4.3	3.00	5.6	5.50	7.5	8.00	9.1
0.30	2.1	1.00	3.2	2.00	4.5	3.50	6.0	6.00	7.9	8.50	9.3
0.40	2.2	1.20	3.5	2.20	4.8	4.00	6.4	6.50	8.2	9.00	9.6
0.50	2.3	1.40	3.8	2.40	5.0	4.50	6.8	7.00	8.5	9.50	9.9

1 IN 30 YO	AR + 30%	CLIMATE	CHANGE
Stevenson Associates		Page 1	
PO Box 58	Bishop's Close		
Monk Fryston	Cawood	Mice	
Leeds LS25 5WZ	DRAFT PROPOSAL	Re-Ch	
Date April 2015	Designed By Stevenson	1) Part	NACE
File BC30-120W.SIM	Checked By		
Micro Drainage	Simulation W.11.3		
	Global Variables		
Profile Ty PIMP (%) Areal Redu Storm Dura Hot Start Hot Start Manhole He MADD Facto Foul Sewag Additional Number of Number of Number of Number of	<pre>iod (yrs) Runoff Coef pe ction Factor tion (mins) (mins) Level (mm) adloss Coefficient r * 10m³/ha Storage e/Hectare (l/s) Flow - % of Total Flow Input Hydrographs Time/Area Diagrams Bifurcations Overflows Off-Line Controls On-Line Controls</pre>	- England & Wales 30 19.000 0.400 0.840 Winter 100 1.000 120 0 0 0.500 2.000 0.00 30 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Freely Discharging Out	falls	
Outfa Pipe Nu		•	
1	004 Existing 7.770 5	.910 1050 0	
	©1982-2008 Micro Drai	nage	

Stevenson Associates		Page 2
PO Box 58 Monk Fryston Leeds LS25 5WZ	Bishop's Close Cawood DRAFT PROPOSAL	Micro
Date April 2015 File BC30-120W.SIM	Designed By Stevenson Checked By	Drainage
Micro Drainage	Simulation W.11.3	

On-Line Controls (Hydro-Brake®)

US/PN	Volume (m³)	Ctrl MH Name	Invert (m)	Туре	Dia (m)			Headloss (m)		
1.003	0.075	6	6.220	Md6 SW Only	0.075	0.900	3.0	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8	2.3 2.1 2.2 2.3 2.5 2.7 2.9 3.0 3.2 3.5	
2.000	13.148	6		Md6 SW Only			3.0	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8		
			©19	82-2008 Mi	cro Dra	anage				-

Stevenson Associates		Page 3
PO Box 58 Monk Fryston Leeds LS25 5WZ	Bishop's Close Cawood DRAFT PROPOSAL	Micro
Date April 2015 File BC30-120W.SIM	Designed By Stevenson Checked By	Dramage
Micro Drainage	Simulation W.11.3	

Network Details

PN	Length (m)	Fall (m)	Slope (1:x)	Area (ha)	T.E. (mins)	Rain Pro	k (mm)	Hyd Sect	Dia (mm)
1.000 1.001 1.002 1.003	48.30 15.00 40.00 6.50	0.322 0.100 0.080 0.018	150.0 150.0 500.0 361.1	0.033 0.025 0.000 0.052	5.00 0.00 0.00 0.00	1 1 1 1	0.600 0.600 0.600 0.600	0 00 0	150 150 1 150
2.000	48.00	0.100	480.0	0.122	5.00	1	0.600	0	600
1.004	45.90	0.310	148.1	0.000	0.00	1	0.600	0	150

PN	USMH No.	US/CL (m)	US/IL (m)	US C.Depth (m)	DS/CL (m)	DS/IL (m)	DS C.Depth (m)	Ctrl No.	US/MH (mm)
1.000 1.001 1.002 1.003	1 2 3 4	7.750 7.650 7.600 7.630	6.740 6.418 6.318 6.238	0.860 1.082 0.382 1.242	7.650 7.600 7.630 7.670	6.418 6.318 6.238 6.220	1.082 1.132 0.492 1.300		1050 1050 3000 3000
2.000	5	7.600	6.320	0.680	7.670	6.220	0.850		1500
1.004	6	7.670	6.220	1.300	7.770	5.910	1.710	9	1500

©1982-2008 Micro Drainage

Stevenson Associates		Page 4
PO Box 58	Bishop's Close	
Monk Fryston	Cawood	Micro
Leeds LS25 5WZ	DRAFT PROPOSAL	R
Date April 2015	Designed By Stevenson	DPannace.
File BC30-120W.SIM	Checked By	
Micro Drainage	Simulation W.11.3	

Summary of Results

Return Period (years)				30	Analysis Time Step Fine			
Storm Duration (mins)				120	DTS Status ON			
Profile Type				Winter	DVD Status OFF			
Margin for Flood Risk warning (mm)				300	Inertia Status OFF			
PN	Water Lev. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity	Overflow (1/s)	Pipe Flow (l/s)	Status	
1.000	7.081	0.191	0.000	0.31	0.0	4.4	SURCH'ED	
1.001	7.075	0.507	0.000	0.51	0.0	6.8	SURCH'ED	
1.002	7.071	-0.147	0.000	0.00	0.0	5.0	O K	
1.003	7.071	0.683	0.000	0.41	0.0	3.3	SURCH'ED	
2.000	7.072	0.152	0.000	0.06	0.0	15.0	SURCH'ED	
1.004	7.077	0.707	0.000	0.21	0.0	3.0	SURCH'ED	

3.0 els MAX (NO FLOODING)

Stevenson Associates		Page 5
PO Box 58 Monk Fryston Leeds LS25 5WZ	Bishop's Close Cawood DRAFT PROPOSAL	Micro
Date April 2015 File BC30-120W.SIM	Designed By Stevenson Checked By	Dramage
Micro Drainage	Simulation W.11.3	

Rainfall Hyetograph

Region Return Period (yrs) M5-60 (mm) Ratio R			FSR - England & Wales Profile Type Winter 30 Storm Duration (mins) 120 19.000 0.400						
Time (mins)	Rain (mm/hr)	Time (mins)	Rain (mm/hr)	Time (mins)	Rain (mm/hr)	Time (mins)	Rain (mm/hr)	Time (mins)	Rain (mm/hr)
4	2.44	28	9.15	52	35.27	76	29.40	100	8.14
8	5.99	32	11.14	56	40.32	80	23.72	104	7.88
12	7.50	36	14.24	60	43.91	84	18.59	108	7.88
16	7.88	40	18.59	64	43.91	88	14.24	112	7.50
20	7.88	44	23.72	68	40.32	92	11.14	116	5.99
24	8.14	48	29.40	72	35.27	96	9.15	120	2.44